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Abstract - This paper presents a new tree-based 
cache coherence protocol which is a hybrid of the lim- 
ited directory and the linked list schemes. By utilizing 
a limited number of pointers in the directory, the pro- 
posed protocol connects the nodes caching a shared 
block in a tree fashion. In addition to  the low coinmu- 
nication overhead, the proposed scheme also cont#ains 
the advantages of the existing bit-map and tree-ljased 
linked list protocols, namely, scalable memory require- 
ment and logarithmic invalidation latency. We evalu- 
ate the performance of our protocol by running four 
applications on an execution-driven simulat,or. Our 
simulation results show that the performance of the 
proposed protocol is very close to  that of the full-map 
directory protocol. 

1 Introduction 
Several cache coherence schemes have Leen pro- 

posed to  solve the cache consistency problem in sltared 
memory multiprocessors[l]. Most of the popular cache 
coherence protocols are based on snooping on the bus 
that connects the processing elements to the mem- 
ory modules [2 . But the obvious limitation to  such 

be supported by a single bus. The single bus be- 
comes the bottleneck in the system. To maze sliared 
memory multiprocessors scalable with respect to a 
large number of processors, non-bus-based networks 
such as point-to-point networks and rnult,istage inter- 
connection networks are normally employed. Since 
the broadcast procedure generates a lot of traffic 
on networks, non-broadcast based directory proto- 
cols are used to impleniknt cache coherence Full-map 
and linked list schemes are two categories of directory 
protoc.ols[3, 41. 

The full-map diredory scheme maintains a bit map 
which contains the informat.ion about which node in 
the system ha.s a shared copy of an associated tllock. 
When a read or write inks occurs, a request is sent, 
to  the home memory module as dct,erinined bv t#he 
address of the requested data. Upon receiving tlLe re- 
quest, the home memory module sends a reply .dong 
with the data to  the requesting node. Thus, it takes 
two messages to  serve a read miss request. However, 

schemes is the 1 imited number of processors that ca.n 

*This research has been partly supported by NSF grant MIP- 
9301959. 

the storage overhead necessary to maintain the direc- 
tory is large, and becomes prohibitive as the size of 
the system grows. Also, the latenc) of cache t.rans- 
actions is Usuiilly larger since these systenis do not 
have a broadcasting medium like a shared bus to send 
invalidation signals. The limited directory approach 
[3, *5] limits tlie number of pointers associated with 
each block in order to keep the directxy size manage- 
able. However, t.his approach also limits the number 
of processors that can share a block. The exist,ing 
schemes are discussed in more detail in Section 2 of 
this paper. 

One way to reduce the storage overhead in the 
directory scheme is to use linked lists instead of a 
sparsely filled table to keep track of riultiple copies of 
a block. The IEEE Scalable Coherenr, Interface ( X I )  
standard project [4, 61 applies t8his approach to define 
a scalable cache coherence protocol. In this approach 
the storage overhead is minimal, but maintaining the 
linked list is complex and time consuming. The proto- 
col is oblivious of the underlying interconnection net- 
work and theiefore, a request may be forwarded to 
a distant node although it could have been satisfied 
by a neighboring node. The major disadvantage is 
the sequential nature of the invalidation process for 
wrile misses. The scalable tree protocol (STP) [7] 
and the SCI tree extension protocol [3] were proposed 
to reduce t,he latency of wrht: misses. The low la- 
tency of read misses is sacrificed in order to  construct, 
a bitlanced tree connecting all the shared copies of a 
cache block. The large number of nicssages generated 
for read misses, however, makes these protocols pro- 
hibit,ive for an application with a smaller degree of 
data sharing. 

In  this paper, we propose a iiew tree-based cache 
coherence scheme for shared memory multiprocessors. 
The proposed scheme aims at reduiing the 1at;ency 
of both rea,d and write misses. The main idea is to 
utilize the sharing information available from the lim- 
ited number of point,ers in the directory in forming an 
appropriate nwnber of trees. It is a hybrid of t8he lim- 
ited directory and the linked list protocols with only 
forward pointers. The Froposed protocol has the ad- 
vantages of the bit-map protocol and the tree-based 
linked list protocol, naraely, small read miss latency 
(two messages), logaritlimic write latency, and seal- 
able directory rnernory requirement. 
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The rest of this paper is organized as follows. In 
Section 2, existing schemes are discussed. The detailed 
design of the proposed tree-based directory protocol is 
provided in Section 3. Performance comparisons be- 
tween different protocols are given in Section 4, by 
using an execution driven simulation. Finally, con- 
cluding remarks are presented in Section 5. 

2 Discussion on Existing Schemes 
Existing directory schemes fall into two categories. 

namely bit-map and linked list protocols. A nomeis- 
clature, DiriX, was introduced in [3] for bit-map co- 
herence protocols. The index i in DiriX represents the 
number of pointers for recording the owners of shared 
copies, and X is either B or NB depending on whether 
a broadcast is issued when the pointers overflow. We 
introduce a new notation DiriTreek for the linked 
list protocols that will cover all the existing linked 
list protocols. The subscript i in Diri represents the 
number of pointers in the directory and subscript k 
in Trec'k represents the number of pointers in the tree 
structure. For example, Stanford's singly linked list 
protocol [GI and SCI [4] belong to DirlTreel because 
they have a single pointer in the directory pointing to 
the head of the list. Note that DiriTreek does not dis- 
tinguish between sin ly linked list protocol (i.e., with 
only fclrward pointer? and double linked list protocol 
(i.e., with both forward and backward pointers). The 
index i of DiriTreek represents the number of nodes 
having shared copies in their local caches. STP [7] be- 
longs to  DirzTreek because it maintains a $-ary tree 
and keeps pointers to  the root of the tree and the latest 
node joining the tree. Similarly, the SCI tree extension 
(P159f1.2 [SI) belongs to  DirzTreea because it main- 
tains a balanced binary tree and keeps two pointers, 
one to the root of the tree and the other to  the head 
(latest node joining the tree). Our tree-based protocol 
is a DiriTreek scheme with only forward pointers. 
2.1 Bit-map Schemes 
A. FuU-Map (Dir,NB) 
In this scheme, R bits are associa.ted with each memory 
block, one bit per node. If a copy of the shared block 
is contained in the local cache of a node, the presence 
bit corresponding to that node is set. The directory 
also haLs a dirty bit. If the dirty bit is set, only one 
node in the system has a copy of the corresponding 
shared block. 

The advantage of t*his scheme lies in that only the 
nodes (caching t,l IC: block receive the invalidation mes- 
sages. The disadvantage is the large directory size. 
The amount, of the directory memory in the n-node 
system is B .  n2 bits, where B is the number of shared 
blocks in each node. 
B. Limited Directory Schemes 
The main idea behind these schemes is based on the 
empirical results that in most of the applications, only 
a small number of processors share a memory block 
most of the time. Thus, a limited number of pointers 
in the directory will perform as well as the full-map 
scheme: most of the !,ime. The advantages of having 
a limit4ed number of pointers are the scalable mem- 
ory requirement and faster hardware support. If the 
pointers are not sufficient to record all the nodes hav- 
ing shared copies (i.e., pointer overflow), a mechanism 

must be employed to deal with it. The memory re- 
quirement in a limited directoi y scheine is B + i s R log n 
in an n-node system, where each node has B blocks of 
shared memory and i is the number of pointers in the 
dirw t v y .  

'0 limited directory schemes, DiriB and DiriNB, 
hnl"  been proposed in the literature[3]. The broad- 
CZ-- scheme DiriB employs a,n overflow bit t80 han- 
dl6, ;:'tinter overflow. If there is no pointer in the 
di I I "tory available for subsequent requests, the over- 
f l i  1": bit is set. Then, invalidation messages will be 
br')adcast to all the processors in the system to  main- 
tain cache coherence when a write miss occurs. This 
scheme performs poorly if the number of shared copies 
is just greater than the number of pointers. The 
non-broadcast scheme DiriNB avoids the broadcast 
designed for solving the pointer overflow problem in 
DiriB by invalidating one OC the processors pointed by 
the pointers and replacing it with the current request. 
This scheme does not perform well when the number 
of shared copies is much greater than the number of 
the pointers. 

In LimitLESSi [5] and DirlSW [9], the pointer over- 
flow problem is solved by software. All the pointers 
that can not fit into the liiniirt:d hardware-supported 
directory space are stored in traditional memory by 
the software handler. The delay in calling the soft- 
ware handler is their major disadvantage. 
2.2 Linked List Schemes 
Singly Linked List Protocol 
In this protocol [6], a list of pointers is kept in the pro- 
cessors caches instead of main memory. Each shared 
block only keeps a pointer to a node which contains 
a valid copy of the block. The node called the head,  
pointed to by the home niernctry module, is the last one 
which accesses the Corresponding shared block. The 
head in turn uses its pointer to point to another node 
which also has a valid copy. Continuing the above 
pointing process, a singly linked list is formed. The 
last node in the list, called the t ad ,  points back to  the 
home memory module. 

On a read miss, a request is first sent to the home 
memory module. The memory module informs the 
head to supply the requested block to  the requester. 
Tn the meantime, the memory updates its pointer to 
point to the requester. Upon receiving the block, the 
requester points to the supplier. The requester now 
becomes the head of the list. 

On a write, the request is again sent to the home 
meinory module. The memory module then follows 
the pointers on the linked list to invalidate all the valid 
copies in the system. Upon receiving the invalidation 
message, the head supplies the requested block to the 
requester. The tail sends an acknowledgment to the 
requester to indicate the completion of the invalidation 
process. The directory memory requirement for this 
protocol is (C+B).n log n bits. where B and C are the 
numbers of memory and cache blocks in each node. 
Scalable Coherent Interface 
Scalable Coherent Interface (SCI) is a n  IEEE standard 
(P159G) [4]. It, is based on it doubly linked list. On 
a read miss, the reading cache sends a request to the 
memory. If the list is empty, t,he memory points to 
the requester and supplies the data. Otherwise, i.he 
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old head of the list is returned to  the requester. After 
receiving the reply from home memory, the read re- 
quester sends a new request to  the old head of the list. 
The old head returns the requested data and updates 
its predecessor pointer to the requester. The requester 
sets its successor pointer to  the old head and becomes 
the new head of the list. 

On a write miss, the requester puts itself as the new 
head of the list as in the read miss situation. Then 
it sends an invalidation message to its successor and 
waits for for an  acknowledgment. After its successor 
is invalidated and taken out of the list, the requester 
updates its successor pointer to the successor of its 
old head and continues the same invalidation process. 
It takes 2 P  messages to  invalidate a list of P cached 
copies. Adding the four messages for inserting itself 
as a new head, the requester takes 2 P + 4  messages to  
get the write permission. 
Scalable Tree Protocol 
The scalable Tree Protocol (STP [7] uses a top-down 

tree as an example. The first node issuing a read re- 
quest t o  a specific memory block will be the root of the 
tree. The 211d and 3rd nodes issuing read requests will 
be the children of the first one. Similarly, the 4th and 
5th nodes making a read request will be the children 
of the 2nd node. Continuing the same procedure, a 
balanced tree is formed. The invalidation process fol- 
lows the tree structure and can be done in logarithmic 
time. 

This protocol attains a logarithmic invalidation 
process by constructing a balanced tree, but paying 
the price of generating too many messages for read 
misses. Since most of the requests in an application 
are read misses, the protocol performs poorly when 
the degree of data sharing or write misses is low. 
SCI Tree Extension 
This scheme is proposed as an IEEE standard exten- 
sion (P1596.2) of SCI [8]. It constructs a balanced 
tree by using AVL tree algorithm. This scheme has a 
read miss overhead similar to STP. Thus, it does not 
perform well for the applications with a low degree of 
data sharing and less frequent write misses. 

We summarize the number of messages generated 
by a read or a write miss for the various protocols in 
Table 1. The pros and cons of each protocol are also 
given in Table 2 .  The Dir4Treez is an example of the 
new protocol, proposed in the next section. 

approach to  construct a balance d tree. Take a binary 

3 The New Cache Coherence Protocol 
We propose a DirLTreeA cache coherence protocol 

that combines a limited directory scheme with a tree- 
based scheme. The design of the protocol aims at min- 
imizing the conimunication overhead for constructing 
the tree structure when a read miss occurs, and for in- 
validating the copies of the shared memory block when 
a write miss occurs. We begin by discussing the direc- 
tory structures for cache and memory blocks. Then, 
coherence actions are described for read misses, write 
misses, and block replacements. 
A. Directory Structure 
The proposed scheme maintains many optimal or 
near-optimal trees for all shared cache blocks. We 
call it a DiraTreek scheme because i k-ary trees are 

maint.ained. The indices i and k of DiriTreek indi- 
cate the number of pointers in each memory block and 
cache block, respectively. Thus, DiriTreek employs i 
point,crs in a. memory block a,nd constructs k-ary trees 
poinivl to by these i pointers. As an example, the 
org :;ization of the trees with 14 shared copies con- 
sti .,ted for the Dir4Tree2 scheme is shown in Figure 1, 
wli- .(> the numbers in the circles denote the arriving 
s c ~ :  rice of the read requests. The construction of the 
t r ,  ; is explained in detail later under read miss. The 
i i  'iiiory requirement is B . li 2i log n + C . k log n in 
a i ;  n-node system, where I3 and C are the numbers of 
mc,mory and cache blocks per node, respectively. 

Memory _ _ _ _ ~  

Figure I: The organization of trees constructed for 
DireTreez. 

The empirical results in [IO] suggest that in many 
applications, the number of shared copies of a cache 
block is lower t,han four, regardless of the system size. 
Thus, we feel comfortabe in :jsirig i = 4 and k = 2 
to construct binary trees in {,his study. The write op- 
eration can be implemented by employing either an 
invalidation or an update protocol. We use an inval- 
idation protocol with a starong consistency model in 
this paper. Figure 2 shows the structures of cache 
and memory blocks. The va.riable level in the mem- 
ory block is used to record t~he height of the trees, and 
facilitates constructing riear-apt,imal trees. 

(a) (b) 

Figure 2: The structures of cache arid inemoiy blocks. 

B. The Protocol and its Coherence Operations 
The states of cache blocks are E (ezcbuszve), V ( u a l z d ) ,  
and IV (mvabad) ,  R M l P  (Read Miss In Process), 
W M I P  (Write Miss In Procers), and INV-IP (Inval- 
tdation In Process) The d a t e  transition diagram of 
cache blocks is shown in Figure 3. R M I P ,  W M I P ,  
and I N V l P  are transient stales. In general, the co- 
herence operations are similar to those in the full-map 
protocol 
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Protocol 
Full Map 

Uzri N B  

LimitLFSSd, 

Table 1: Number of messages generated by a read or write iiiiss for various schemes, where Y is the number of 
processors that access the memory block under consideration. 

Pro Con 
Simple to implement 
No replacement overhead 
Low read miss overhead 
Simple to  implement 
Low memory overhead Sequential invalidation 
Low read miss overhead 
Low memory requirement Sequential invalidatioo 
(hardware) 

High memory overhead 
Sequential invalidation process 

High invalidation overhead 

Hinh read miss o v e r t - i e r t d  

slow software handler 
Single Link Chain Moderate memory overhead Sequential invalidatiofi- 
Double Link Chain Moderate memory overhead Sequential invalidatGiT- 
SCI extension Logarithmic invalidation - 

High replacement overhead 

DiriTreek Low read miss overhead 
Logarithmic invalidation 
Low memorv overhead 

Table 2: Pros and Cons for various protocols. 

Since we use a strong consistency model, the state 
of a cache block which sends invalidation messages to 
its children is changed to W M J l P  and waits for the 
acknowledgments. The transient state W M l l P  for 
cache blocks does not exist in the full-niap protocol. 
Two kinds of invalidation messages are shown in Fig- 
ure 3. [ N V  is used for the regular invalidation mes- 
sages, its in the full-map protocol. Replace-INV is 
used for the coherence operations for cache replace- 
ments and will be explained in detail later. 

The states of the memory blocks are the same as 
those in the full-map directory protocol. Figure 4 
shows i,he state transition diagram of the memory 
blocks. The memory transient states are RM-WW 
(Read Miss Waiting for Writeback), WM-WW Write 
Miss Waiting for Writeback), and W M l l P  I Write 
Miss’s Invalidation In Process). 

The major differences between Dir,Treer, and the 
full-map protocol lic i n  how the tree is constructed by 
using the limited number of pointers arid in the ac- 
tions taken for block replacements. As in the full-map 
directoIy protocol, the requested block is always pro- 
vided by the home node. We discuss the read miss, 

wi:e miss and the coherence operations for cache re- 
placwnents in detail below. 

Read miss: A read request is said to be a miss 
if the cache controller find:; that the requested data is 
not in any cache block, a the cache block containing 
Ihe requested data is in invalid state. When a read 
miss occurs, a local cache is first selected for replace- 
ment. The request is then passed over the network to 
the hoine memory modulc. The operations to  serve 
a read miss are the same as in  the limited directory 
bchcme if a null pointer in the directory is available for 
the request. Otherwise, two pointers are selected and 
sent, to the requesting node along with the requested 
data. The processors which were pointed to by the 
selected pointers will become the children of the re- 
questing processor. One of these two pointers is set 
to point to the requesting processor and the other is 
set to null. Figure 5 shows how a trree is constructed 
while the fifteenth request arrives at the home mem- 
ory module in Figure 1. It can be seen that after the 
read miss is completed, processors 11 and 13 become 
the chiltlreri of processor 15. 

l’igure 6 lists in detail the cohvrence operations for 
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N - O K  if not eartplete 

Figure 3: %ate transition diagram of the cache blocks. 

\d 
WY OK 

Figure 4: State transition diagram of the memory 
blocks. 

serving a read miss at the home memory module. Four 
different situations are considered in Figure 6. First, 
it checks whether or not the processor has been al- 
ready recorded. This situation might occur when the 
cached block in a processor was replaced and later on 
that processor issues a read request again. The second 
situation considers the case when a processor has a 
read miss the first time, and there is an empty pointer 
available. The third and forth parts consider the cases 
when there is no pointer available in the directory for 
the next incoming read request. If there are two point- 
ers point.ing to  two trees with the same height, these 
two pointers will be sent to  the requesting processor 
and the processors pointed to  by these two pointers 
become the children of the requesting processor. Fi- 
nally, one of these two pointers is set to point to the 
requesting processor and the other is set to null. The 
last situation considers the case when there are no two 
pointers which point to  the trees with the same height. 
The pointer with the smallest level will be selected 
and sent to  the requesting processor. The processor 
pointed to  by the selected pointer becomes the only 

Figure 5: Message movements for a read miss. 

for (i = 0..3) 
if (p[i] == requester) { 

(data, null, null) -+ requester; return; } 

Figure 6: Cache coherence operat,ions for a read miss. 

child of the requesting processor. Then the selected 
point,er is set to  point to requesting processor and the 
level of the pointer is incremented by one. 

Notme that Figure 6 only- shl>ws the high level algo- 
rit2hm for dealing with a read miss. It' is possible to 
implement an efficient hardware design for this opera- 
t,ion. Unlike the limited directory, DiriTreek does not 
rely on broadcast, or generate any unnecessary inval- 
idation messages. DiriTreek does not have the high 
overhead caused by a software trap iised by the Lim- 
itLESS schemes. 

Since there are only limited number of pointers in 
the directory, trees generated by DiriTreek are not 
balanced. Subsequently, we base on a fixed num- 
ber of processors sharing a memory block and discuss 
how balanced are the trees generated by the proposed 
scheme. 

Consider the DirzTreez scheme first. Two point- 
ers, PO and P1, are in the directory. Let N l ( j )  and 
N Z ( j )  be the number of processors in the j-level tree 
pointed to  by PO and P1, respectively. Table 3 shows 
the expressions of N l ( j )  and iV2  j) derived from Fig- 
nre 6. The expressions of ,Vl(j \ and N z ( j )  can be 
simplified a.s j and j ( j  + 1)/2,. respectively. Similarly, 
the expression of Ni(j) for DiriTreea can be derived 
as 2j - I. + ~ j k ~ ~ ( N i - l ( / e )  -t I ) .  Table 4 lists the max- 
imum nuniber of processors caching a memory block 
versus the level of the trees for the proposed schemes, 
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Table 4 :  Maximum number of nodes constructed in 
Dir2Trel.a and Dir4TPee2 as a function of level. 

Dir2Tre32, DireTreez, and SCI or STP with binary 
trees. We can easily check from the first row of the ta- 
ble that when there are 16 processors caching a mem- 
ory blotk using the Dir4Treea scheme, pointers 0 and 
1 point to a tree with 7 nodes and pointers 2 and 3 
point to a singly node. If a 1024-node system is built, 
the biggest tree maintained by the Dir4Treea scheme 
is of 12 levels which is only one level more than the 
balanced binary tree. 

Write miss: When a write miss occurs, the write 
request is first sent to the home memory module. In- 
validatim messages are then sent out to the root nodes 
of the uees by following the pointers in the direc- 
tory. The other nodes caching the data are invali- 
dated Ey the messages originating from their corre- 
sponding roots. In order to speed up the invalidation 
process further, the nodes pointed to  by odd num- 
bered pointers receive invalidation message from the 
nodes pointzed to by even numbered pointers. The 
home memory module only receives at most half the 
number of ackiiuwledgments and thus, the possibility 
of the home node becoming a bottleneck reduces. An 
example of a write miss operation is shown in Fig- 
ure 7, where 15 shared copies are in the system be- 
fore a urite miss occurs. The invalidation messages to  
node 15 originate from nodes 9. The acknowledgments 
which are omitted from the figure to preserve clarity 
follow the reverse direction of the invalidation paths. 
It can he seen that Dir4Tree2 has a 3-level tree which 
is shorter than the 4-level binary tree with ten nodes 
maintained by an STP protocol with binary trees or 
the SCI tree extension. 

Replacement Operation: When a miss occurs, a 
cache block must be selected for storing the requested 
data before a request is sent to the home memory 

Figure 7: Messagc movement:; for a write miss. (For 
clarity, acknowledgments are omitted.) 

module for service. If the selected cache block cur- 
rently holds a valid or exclusive copy of data with 
a different address, a replacement operation needs to 
be performed. We propose that when a valid or ex- 
clusive cached block is being replaced, the subtree 
rooted at the replaced cache block be invalidated with- 
out informing the home directory. The message t,ype 
Replace-INV is used for replacement operation to tlis- 
linguish I N V  generated by write misses because no 
acknowledgment is needed for replacement. The ra- 
tionale of doing this is as follows. First, as noted in 
[lo], most of the time, the ruimber of shared copies of a 
memory block is less than four Thus. our replacement 
operations will perform as well as the bit-map scheme 
because the replaced cache block does not have any 
child most of the time. Second, even when the trees 
grow bigger, most of the replaced cache blocks are 
positioned as the leaf nodes of the trees. Third, the 
replacements are not frequeni, if the set size of an asso- 
ciat,ive cache memory increases. It is possible that one 
of the roots may be replaced and causes some commu- 
nication traffic if one of it,s children issues a request 
later. However, the proposed replacement action is 
simple and easy to implement. It is worthwhile to  
noti. that the only possible communication overhead 
of the proposed scheme comes from the replacements. 

4 Performance Evaluation 
We use four real applications to compare the per- 

formance of the proposed DirJreek coherence scheme 
with that of the full-map a.nd the limited directory 
schcmes. The app1ic;itions comprise MPSD, LU de- 
composition, the Floyd Washall algorithm, and a Fast 
Fourier Transformation program (FFT). We give a 
brief description of each prograni indicating its pur- 
pose and the data structure employed a,s follows. 
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Network bandwidth 

Data cache 
Block Size 

8 bits 

Cache Associativity I Fully Associative 
Network tvDe I binarv n-cube 

' Switch/Wire Delay 
Memory Access Latency 
Cache Access Latencv 

1 

1 cycle 
5 cycles 
1 cvcle 

Table 5: Simulation Model. 

LU I -135.0 
112.0 

1l0.0 
h 5 108.0 

$106.0 

8 104.0 .* c 
8 102.0 

8 
5 ima 

5 98.0 

f m L 4  4 2 1 fmLSL4 4 2 1 fmL8L4 4 2 1 
L+ 

16 32 No. of Processors 8 

Figure 8: Normalized execution time for MPSD. 

4.1 Siniulat ion Methodology 
We ported the proposed coherence scheme to 

Proteus[ll] which is an execution driven simulator for 
shared memory multiprocessors. The simulator can 
be configured to  either bus-based or k-ary n-cube net- 
works. The networks use a wormhole routing tech- 
nique. The specification of the simulated network 
and the cache memory is given in Table 5. We com- 
pare the normalized execution time for each applica- 
tion running with the various schemes as mentioned 
above, where the normalized execution time is defined 
as the relative execution time to  that of the full-map 
scheme. The examined schemes are Dir,NB, DiriNB 
and DiriTreez for i = 1 ,2 ,4 ,8 .  The results are plot- 
ted in Figs. 8 through 11 for various applications. 
The full map scheme is denoted by fm, the limited di- 
rectory schemes by L8, L4 L2, L1 and the DiriTree2 
scheme is represented by 8, 4, 2 and 1. 
MP3D: The MP3D application is taken from the 
SPLASH parallel benchmark suite [la]. It is a 3- 
dimensional particle simulation program used in the 
study of rarefied fluid flow problems. MP3D is no- 
torious for its low speedups. For our simulation, we 
used 3000 particles and ran the application in 10 steps. 
The results are given in Figure 8 for 8, 16, and 32 pro- 
cessors. Comparing the full-map and limited directory 
schemes in the 8 and 16-node system, the performance 
of the full-map scheme is the best. It is shown that 
DirqTreez is only less than 5% slower than the full- 
map scheme and much faster than the limited direc- 

jrVu fmL4L21.14 2 1 fraIAL2LI 4 2 1 fmL4LZLI 4 2 1 

LvJ \--J ,~.--"2 

16 32 N o . d h w e s s m  8 
fm fullmap 
B. Dir*Nl? 

yhqE2 Figure 9: Normalized execution time for LU 
2: Di$rcsz 
1: ol\Tre% 

tory schemes Dir4NB and DirsNB. In a 32-node sys- 
tem, the performance of DirzTreez and Dir4Tkeez are 
betier than all other schemes. 
LU Decomposition: The LU application is also 
taken from the SPLASH parallel benchmark suite [la]. 
It is a parallel version of dense blocked LU factoriza- 
tion without pivoting. The data st,ructure includes two 
dimensional arrays in which the first dimension is the 
block to be operated on, and f8he second contains all 
the data points in that block. We use a 128x128 nia- 
trix in our simulation study. Figure 9 shows the per- 
formance results for LU. Jt can be seen that DirlNB 
performs worst in all the cases. In a 8-node system, 
DirlTree2 performs better than all other schemes. In 
the l6-node system, Dir4NU, DirlDee2, DirzTreea, 
and Dir4Tree2 perform as well as the full-map scheme. 
In the 32-node system, surprisingly, Dir4NB has the 
best performance. DirzTreea and Dir4Treez also per- 
form better than the full-map scheme. 
Floyd Washall: Floyd Washall is a program that 
c,orriputes the shortest, distance between every pair of 
nodes in a, network. The network employed is a rnn- 
doni graph of 32 nodes. The hasic data structures in 
the Floyd Washall algorithm are 2-dimensional arrays 
for representing the predecessor matrix and the dis- 
tance matrix. An additional 2-dimensional array is 
also used for recording the computed path. Each pro- 
cessor is responsible for updating a few rows of the dis- 
tance matrix. The entire matrix is dedared as a shared 
array. Updating the dist,ance matrix requires reading 
the entire shared array, which incurs a large degree 
of data sharing. Figure 10 shows the performance 
plol. for the Floyd Washall program. DiraTree2 and 
Dir4Treez perform very closely to the full-map scheme. 
The performance difference bet.ween Dir4Tree~ and the 
full-map scheme is less than 2%. 
FFT: Figure 11 gives the results for t,he FFT applica- 
tion. Except DirlTreez, all the other schemes perform 
very well. However, the proposed schemes Dir4Tree2 
and Dir,Treez perform better than t.he full-map and 
the limited directory schemes. The improvement in 
case oC 1,hc proposed schemes. increases when the sys-- 
tein becomes bigger. The irnprovement stems from the 
fact that, not much cornniunication overhead is caused 
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5 Conclusion 
In this paper, we proposed a new tree-based di- 

rect,ory cache coherence protocol for shared memory 
multiprocessors. The proposed protocol combines the 
features of the limited directory schemes with tree pro- 
tocols. It utilizes a limited number of pointers to con- 
struct i,rees to reduce the directory size and invali- 
dation latency. Compared to the STP and the SCI 
tree extension scheme, the proposed scheme has lower 
read miss overhead, which is just two messages. At 
the same time, it retains the low invalidation proper- 
ties of ii tree protocol for large degree of sharing. The 
trees constructed hy the proposed scheme are nearly 
balanced. Execution driven simulation shows that the 
proposcd scheme is very close in performance to the 
full-map scheme. When the number of processors is 
large, the new scheme even performs bei8ter than the 
full-map scheme in some cases. i l t  the same time, our 
scheme requires less directory space than the full map 
scheme. 
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